DPP-1 (Unit \& Dimension)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-

https://youtu.be/sHxBTYqcMOA

Written Solution on Website:-
 https://physicsaholics.com/note/notesDetalis/69

Q 1. Which of the following physical quantities has neither dimensions nor unit?
(Hint:- $\mathrm{f}=\mu \mathrm{N}$; where, $\mu=$ coefficient of friction, $\mathrm{f}=$ friction force $\& \mathrm{~N}=$ Normal force)
(a) Angle
(b) Luminous intensity
(c) Coefficient of friction
(d) Current

Q 2. Dimensional formula for coefficient of viscosity (η) [use $F=6 \pi \eta r v$ (r=radius; $\mathrm{v}=$ velocity; $\mathrm{F}=$ viscous force]:
(a) $M L^{-2} T^{-1}$
(b) $M^{-1} L^{1} T T^{-1}$
(c) $M^{1} L^{1} T^{-2}$
(d) $M L^{-1} T^{-1}$

Q 3. The dimensions of radian per second are.
(a) $\left[M^{0} L^{0} T^{0}\right]$
(b) $\left[M^{0} L^{0} T^{1}\right]$
(c) $\left[M^{0} L^{0} T^{-1}\right]$
(d) $\left[M^{0} L^{2} T^{-1}\right]$

Q 4. The dimensional formula of radius of gyration is:
(a) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(b) $\left[M^{0} \mathrm{~L}^{0} \mathrm{~T}\right]$
(e) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(d) $\left[\mathrm{M} \mathrm{LT}^{-1}\right]$

Q 5. From the following pairs of physical quantities, in which group dimensions are not same:
[Hint:- Linear momentum $=$ mass \times velocity, Torque $=$ Force \times perpendicular distance, Impulse $=$ Change in momentum]
(a) Linear Momentum and impulse
(b) Torque and energy
(c) Energy and work
(d) Light year and minute

Q 6. The dimensional formula for Planck's constant (h) is (Hint:- Unit of planks constant $=\mathrm{J}$-sec)
(a) $\left[M L^{-2} T^{-3}\right]$
(b) $\left[M^{0} L^{2} T^{-2}\right]$
(c) $\left[M L^{2} T^{-1}\right]$
(d) $\left[M L^{-2} T^{-2}\right]$

Q 7. An atmosphere:
(a) is a unit of pressure
(b) is a unit of force
(c) gives an idea of the composition of air
(d) is the height above which there is no atmosphere

Q 8. The dimensions of wavelength (λ) is:
(Wavelength = Distance travelled by wave in one time period)
(a) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
(d) none of these

Q 9. State which of the following is correct?
(Hint:- When a charge q is accelerated by a Voltage V then its energy $=q V$)
(a) joule $=$ coulomb \times volt
(b) joule $=$ coulomb/volt
(c) joule $=$ volt + coulomb
(d) joule $=$ volt/coulomb

Q 10. Of the following quantities, which one has dimensions different from the remaining three?
(Hint:- Angular Momentum $=$ mass \times velocity \times perpendicular distance,
\& When a charge q is accelerated by a voltage V then its energy $=q \mathrm{~V}$)
(a) Energy per unit volume
(b) Force per unit area
(c) Product of voltage and charge per unit volume
(d) Angular momentum

Q 11. The dimensions of frequency is:
(Hint:- frequency $(\mathrm{f})=\frac{1}{T} ; \mathrm{T}=$ Time period)

(a) $\left[\mathrm{T}^{-1}\right]$
(b) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-2}\right]$
(d) None of these

Q 12. Young's modulus (Y) of a materíal has the same unit as $\left(\mathrm{Y}=\frac{\text { Stress }}{\text { Strain }} ;\right.$ where, Stress $\left.=\frac{\text { Force }}{\text { Area }} \& \operatorname{Strain}=\frac{\text { Change in length }}{\text { original length }}\right)$
(a) Pressure
(b) Strain
(c) Density
(d) Force

Q 13. The unit of impulse is the same as that of
(Hint:- Impulse $=$ Force \times time, Momentum $=$ mass \times velocity, Power $=$ Energy per unit time)
(a) Energy
(b) Power
(c) Momentum
(d) Velocity

Answer Key

Q. 1 c	Q. 2 d	Q. 3 c	Q. 4 c	Q. 5 d
Q. 6 c	Q. 7 a	Q. 8 b	Q. 9 a	Q. 10 d
Q. 11 a	Q. 12 a	Q. 13 c		

Access to curated test series
© Daily practice questions
© India's best educators
© Interactive live classes
1:1 Live mentorship
Live doubt solving

42 months
No cost EMI

$\left.\begin{array}{lr}\hline 18 \text { months } & \text { ₹2,887/mo } \\ \text { No cost EMI } & \text { ₹51,974 }\end{array}\right\rangle$

To be paid as a one-time payment

PHYSICSLIVE

To be paid as a one-time payment
Use code PHYSICSLIVE to get Maximum OFF on Unacademy PLUS / Iconic and learn from India's Top Faculties

Written Solution

DPP-1 Units \& Dimensions
By Physicsaholics Team

Solution: 1
Imine intensity.
\qquad

$$
\leftrightharpoons c d
$$

currant

Angle

$$
23>\mathrm{rad}
$$

coefficient of friction $u=\frac{5}{N}=\frac{\text { Farce }}{\text { farce }}$
Is No unit No dimension.

Ans. c

Solution: 2

$$
\begin{aligned}
& F=6 \times N \mathrm{VV} \\
& {[F]=M L T^{-2}} \\
& {[\gamma]=2} \\
& {[v]=[E T]} \\
& \frac{\text { CESN }}{\text { OPNO] }}=\frac{M L T^{2}}{2 \cdot 2 T^{-1}} \\
& M L^{-1} T^{-1}
\end{aligned}
$$

Solution: 3
radian ron see = roctasec
rant Angle \rightarrow dimension lees

Solution: 4

Radius of gyration is measure of distance. (You will study this in the chapter "Rotational Motion."

Ans. c

Solution: 5

$$
\begin{align*}
& \text { Impulse (I) } \tag{E}\\
& P=m v \\
& I=\Delta P \\
& \text { Soj }[I]=[P P]
\end{align*}
$$

(a) Linear Momentum (p)
(c) Evergy: + work

$$
[E]=[00]]
$$

(b) Torque \& Energy

$$
\begin{aligned}
& (\varepsilon) \\
& \tau=\left(F \times r_{1}\right) \\
& (E)=F \times x
\end{aligned}
$$

Enery or wark.

$$
[z]=[\in]
$$

(d) Light year is length minute is time

$$
[l] \neq[T]
$$

Ans. d

Solution: 6

$$
[h]=1
$$

Unit of $h=$ Joule - see
Joule \rightarrow energy

$$
\begin{aligned}
{[E]=} & M L^{2} T^{-2} \\
{[T h]=} & =G[E] \\
& =M L^{2} T^{-2} \cdot T \\
& =M L^{2} T^{-1}
\end{aligned}
$$

Ans. c

Solution: 7
at mospherelatim) is the crnpt of prossucre.

Solution: 8

$$
\begin{aligned}
& \text { Wavelength fl measurgeg } \\
& \text { Id }{ }^{5}=5 \text { Dor } M^{0} L^{1} T^{0}
\end{aligned}
$$

Solution: 9

$$
\frac{\text { Snergy }=28 v}{\text { Soule } \frac{2 B y}{s} \text { toulcubl vatt }}
$$

Solution: 10
(a) $\left[\frac{E}{V}\right]=\frac{M L^{2} T^{-2}}{L^{3}}=M L^{-2} T_{2}$

(c) $\left[\frac{\operatorname{Vot} \times[\text { Cultamb }]}{V L}=\frac{\text { Dovte }}{\text { बolunie }}=\frac{M L^{2} T^{-2}}{L^{3}}=M L^{-1} T^{-2}\right.$
\% energif volume
(d) $[\varepsilon]=[m b]=M L T^{-1} L=M L^{2} T^{-1}$
(anguluar momentimem is dended by $=1$)

Solution: 11
Frequioncy, $f=\frac{1}{T}$

$$
\begin{aligned}
& T=\text { Idme perio } \\
& {[T]} \\
& f=T \\
& \text { [f] }=T^{-1} \text { or } \mathrm{M}^{0} L^{0} T^{-1}
\end{aligned}
$$

Solution: 12

$$
\text { [D) }[y]=[R]
$$

$$
\begin{aligned}
& Y=\frac{F_{1}}{\frac{\mathrm{Bl}}{l}}=\text { Youngs Modrius } \\
& {[y]=\frac{\left[\frac{F}{H}\right]}{\left[\frac{A 1}{l d}\right]}\left[\left[\frac{\Delta l}{d} \rightarrow \text { Dimonsiondess }\right]\right.} \\
& \therefore[x]=\left[\frac{R}{7}\right] \\
& \text { Pressure }=P=\frac{C}{A} \\
& \text { [P] [}\left[\frac{R}{\mathrm{~A}}\right]
\end{aligned}
$$

Solution: 13

$$
\begin{aligned}
\text { Impulse } & =\text { Force time } \\
& =M L T^{-2} \times T=M L T \\
\text { Momentum } & =\text { massyvelacity }
\end{aligned}
$$

$$
5 s
$$

Ans. c

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/49

Video Solution on YouTube:-
https://youtu.be/sHxBTYqcMOA

Written Solution on Website:-

- subsCRIBE

0
@ NEET Physics
@IITJEE_Physics physicsaholics.com

CLICK

Chalo

